Apr 132024
 
Last Updated: 4/17/2024
Article Credit: ShootTheCore, rtw, buffi, Arcade Otaku Wiki, Alamone, System11, DragonMinded

Overview

The Cave CV1000 PCB has three major revisions: Early CV1000B, Later CV1000-B and CV1000-D.

  • Early CV1000-B
    • Gold plated JAMMA connector
    • 9 Pin connection header mounted on the right side with some boards.
      It is unused with the released games but theoretically could have been used to link two boards together via serial communication since the connector is identical to the serial connector on PC motherboards.
    • P2 connection pin header in the center of the board populated.
  • Later CV1000-B
    • Tin plated JAMMA connector
    • 9 Pin connection header and P2 connection header unpopulated.
  • CV1000-D
    • Tin plated JAMMA Connector
    • Battery for the real-time clock removed
    • SDRAM doubled from 64Mb to 128Mb

The battery in the upper-right corner of the CV1000-B PCB is used to maintain the real-time clock for book keeping purposes. High scores and game settings are stored in the RTC EPROM. The game “Ibara” also displays a clock in one level of the game that matches the board’s clock setting. CV1000-D removed the RTC and battery, so high scores and game settings are stored in NAND instead of EPROM.

Notable ICs

ICFunctionSilkscreen Label
Hitachi SH3Main CPUU5
Yamaha YMZ770AudioU22
Altera Cyclone EP1C12F324C8Graphics RenderingU8
Altera CA011CPLD used for address decoding of the U2 flash, YMZ770 audio and RTC 9701.U13
RTC 9701 (CV1000-B)Real-Time Clock with embedded EPROM for saving board settings and high scoresU10
AD8061Color amplifier for the Red, Green and Blue outputU14, U15, U16

Board Variants

CV1000-D reproductions from Chinese sellers began surfacing in early 2024. These reproduction boards can be distinguished from Cave originals with the following characteristics:

  • The JAMMA connector is gold plated. Although early CV1000-B boards also had gold plating on the JAMMA connector, all original CV1000-D boards had tin plating.
  • Via “pinholes” are not visible on the back of the reproduced board.
  • A Cave serial number sticker is not present.
  • Some of the reproduction boards do not have the P4 header in the center of the board populated.

At this time, it is believed that the reproduction boards run the games identically to the Cave original hardware. The major IC parts (CPU, Graphics FPGA, Audio, etc) are the same.

Board Re-initialization (credit: MAME)

Some games (such as Mushihimesama and Espgaluda II) do not have a high score reset function. Any CV1000 can be reinitialized to the factory default high score and board settings with the following procedure:

  • During boot, hold P1 Right+A+B+C and P2 Left+A+B+C until the startup checks are complete.

Common Issues and Quirks

CV1000 boards draw less power than your average PCB. Be sure to adjust your arcade PSU down when swapping in one of these boards so you don’t inadvertently over-volt the board!

Leaking Large Capacitor

The large capacitor labeled C109 in the upper-left corner that filters power for the sound amplifier often leaks. The part is rated for 2200 uF at 25 V.

Part number MAL216099606E3 has the same dimensions as the original part, while UCX1E222MNS1GS has the same footprint, but a lower height and a more supportive base. Source: System11

Color Amplifier Degradation (credit: System11)

The Red, Green and Blue color amplifiers located at U14, U15 and U16 respectively can degrade over many hours of use, resulting in a pale or incorrectly tinted display. Replacing the AD8061 color amplifier ICs with fresh parts should resolve the issue. Also note that the Service Menu has a brightness adjustment setting that may need to be changed afterwards.

Flash Deterioration (credit: Buffi)

The flash chip at U2 is known to suffer from data corruption, causing glitching in the graphics. The chip model is Samsung K9F1G08U0. The CV1000 does a manufacturer check at startup to make sure the flash chip is a K9F1G08U0, and will reboot if it is not. Buffi worked out a way to remove these checks, allowing the U2 flash chip to be replaced with an equivalent from another manufacturer.
https://github.com/buffis/cv1k_research/tree/main/U2_Replacement

Alamone worked out a way to fix graphics issues from deteriorating flash by comparing CV1000 U2 dumps and generating relocated NAND blocks:
https://github.com/alamone/u2_compare

Stuck Control Inputs

CV1000 uses three sets of twin resistor banks and individual 130nF ceramic capacitors as ESD protection between each player control input and the signal pins 176-208 on the SH3 CPU. If a resistor array becomes damaged then a control input may be “stuck” – always on or always off. It’s also possible for an ESD charge to make it through the ESD protection and fry the input line on SH3 CPU – the only resolution then is to replace the entire CPU. You can check the game’s reading of the control inputs in the Service Menu.

  • Resistor Array with 101 marking – replacement part number: 742C163101JP
  • Resistor Array with 103 marking – replacement part number: 742C163103JP

CPU Stuck in a Boot Loop – Nothing on Screen (credit: DragonMinded)

If the CPU is stuck in a boot loop, the LED at L6 will pulse every second to a darker color. Ensure that the 32.768 Khz crystal located at X2 is intact and functioning.

Source: https://gamerepair.info/hardware/37_cave_cv1000

Board Does Not Boot at All (credit: Buffi)

If the EPM7032AE CPLD at location U13 fails then the board will not start up. Buffi has devised a replacement bitstream that can be programmed onto a replacement CPLD to revive the board.
https://www.arcade-projects.com/threads/u13-replacement-for-cave-cv-1000-pcb-repair.17007/
https://github.com/buffis/cv1k_research/tree/main/U13_Research

Protection Mechanisms

Game resources are stored on flash chips located at U2, U4, U23 and U24. The U2 and U4 chips can be accessed by the on-board JTAG connector, but U23 and U24 are not on the JTAG bus and can only be rewritten if the chips are physically desoldered and removed from the board.

The U2 flash is a Samsung K9F1G08U0. The games check the flash ID at boot and if it doesn’t match the expected flash model then the game reboots.

Capacitor List

LocationCapacitanceVoltageTypePart No.
C1092200 uF25 VRadialMAL216099606E3
C121100 uF6.3 VRadial
C11439 uF16 VRadial
C12239 uF16 VRadial
C11339 uF16 VRadial
C131100 uF6.3 VRadial
C132100 uF6.3 VRadial
C13339 uF16 VRadial
C139100 uF6.3 VRadial
C140100 uF6.3 VRadial
C14139 uF16 VRadial
C951000 uF16 VRadial
C102100 uF6.3 VRadial
C103100 uF6.3 VRadial
C143100 uF6.3 VRadial

ROM Details (credit: rtw World of Arcades)

ICFunctionSilkscreen Label
MX 29LV160BB (Early boards)
Spansion S29JL03SH70TF102 (Later boards)
Main CPU Code, FPGA bitstream sourceU4
Samsung K9F1G08U0MGraphics AssetsU2
MBM 29DL321 (CV-1000B)
MT 46V16M16 (CV-1000D)
Sound AssetsU23
MBM 29DL321 (CV-1000B)
MT 46V16M16 (CV-1000D)
Sound AssetsU24

Source: rtw World of Arcades

Schematics & Datasheets

Original Cave schematics are unavailable for CV1000.

Buffi collected datasheets on the components used in CV1000.

Additional Resources

MAME CV1000 Driverhttps://github.com/mamedev/mame/blob/master/src/mame/cave/cv1k.cpp
Buffi CV1000 Researchhttps://github.com/buffis/cv1k_research
Buffi CV1000 Blitter Researchhttps://buffis.com/research/cv1000-blitter-research/
Buffi CV1000 Replacing U2 with another NAND Flashhttps://github.com/buffis/cv1k_research/tree/main/U2_Replacement
Buffi CV1000 U13 Reverse Engineering and construction of a compatible bitstreamhttps://github.com/buffis/cv1k_research/tree/main/U13_Research
Buffi Espgaluda 2 Repair of Bad U2 NAND Using JTAGhttps://www.arcade-projects.com/threads/espgaluda-2-cv1000-repair-of-bad-u2-nand-using-jtag.19108/
Buffi Research into CV1000 Blitter performance and behaviorhttps://buffis.com/research/cv1000-blitter-research/
Buffi CV1000 CPU Slowdown investigatedhttps://buffis.com/research/cv1000-cpu-slowdown-investigated/
Buffi More CV1000 Researchhttps://buffis.com/research/more-cv1000-research-now-featuring-clipping/
rtw World of Arcadeshttp://www.world-of-arcades.net/Cave/Hardware_SH3/Hardware.htm
System 11 Blog: Cave CV1000 Color ProblemsOffline – Archived on 12/11/2023
Arcade Otaku: Cave CV1000https://wiki.arcadeotaku.com/w/CAVE_CV1000
Gamerepair.infohttps://gamerepair.info/hardware/37_cave_cv1000
Nicole Express: A Last Gasp of 2Dhttps://nicole.express/2022/games-made-in-a-cave.html
Cave CV1000 PCB Serial Number Codes Explainedhttps://cave-stg.com/forum/index.php?topic=1754.0
Apr 132024
 
Last Updated: 4/19/2024
Article Credit: ShootTheCore, wickerwaka, ekorz, System11, Apocalypse

Main Board

The Main Board is largely identical across all Irem M92 games. It is labeled either M92-A-A or M92-A-B.

Early boards have less Object RAM (16K) installed at locations IC43 & IC44 than later boards (64K) – selectable by jumper J2 – but all M92 games are confirmed to function correctly with the 16K board. Thus, the difference in RAM was likely determined by parts cost at the time of manufacture.

Notable ICs

ICFunctionSilkscreen LabelLocation
NEC D71036L V33Main CPUH8
Nanao GA20Sound FX SamplesIC32 GA20B6
Nanao GA21SRAM DMA and Address Generation for GA22IC42 GA21M7
Nanao GA22Graphics RenderingIC63 GA22M10
YM2151FM Sound ChipIC33C6
YM3014Sound D/A ConverterIC208 YM3014C5

Secondary Board

The Secondary Board layout varies across the M92 games.

The Sound CPU resides on the secondary board and utilizes an encryption mechanism – see “Copy Protection” below.

GameBoard ModelSound CPU ModelNotes
Blade Master / Cross BladesM92-B-A
M92-D-A
Dream Soccer 94
GunForceM92-B-A
GunForce II / GeoStorm
HookM92-D-A
In The Hunt / Kaitei DaisensouM92-E-B
Lethal Thunder / Thunder BlasterM92-C-B
Major Title 2 / The Irem Skins GameM92-B-FOnly M92 game to utilize an EPROM for saving scores.
Mystic Riders / Gun HokiM92-B-B
Ninja Baseball Bat Man / Yakyuu Kakutou League-ManM92-F-A
M92-Z-C
Perfect Soldiers / Superior Soldiers
R-Type LeoM92-C-N
Undercover CopsM92-E-B

Notable ICs

ICFunctionSilkscreen Label
Nanao 08J27261A1 V35Sound CPUIC10
Nanao GA23ROM Addressing (Assumed)IC23 08J27504A1

Board Variants

M92 boards manufactured for the Korean region have several noticeable differences from boards manufactured for other territories:

  • The green silkscreen is a lighter shade of green.
  • The JAMMA connector does not have a key notch.
  • SRAM ICs on M92 boards for other regions are manufactured by NEC whereas on the Korean boards they are manufactured by Hyundai and Goldstar.
  • The amplifier heatsink is physically smaller, and is colored silver rather than black.
  • One or both boards may be missing markings for the board type on the silkscreen.
  • A metal serial number tag is not present in the upper-right corner of the A Board.

There are also single-board bootlegs of several M92. They are much smaller than original M92 boards and thus are easily distinguished. Compared to the original games, bootlegs often omit animation frames, shorten the music tracks and gameplay slows down more frequently.

Common Issues and Quirks

  • The factory-installed capacitors are colored green or brown. The ELNA brand brown-colored capacitors are notorious for leaking and should be replaced ASAP.
  • Video output is darker than average with this hardware.

Protection Mechanisms

The Nanao 08J27261A1 V35 Sound CPU on the B Board enforces a security scheme where each game’s sound CPU code is encrypted in ROM and then decrypted by a key specific to the model of CPU. Thus, if the game ROMs are swapped to another game without decrypting the sound CPU code of the new game and re-encrypting the code to match the encryption scheme of the old game, the sound CPU will crash and the game won’t have sound.

Changing jumpers J1 and J6 adjacent to the Sound CPU from “S” to “N” disables the decryption mechanism and allows the CPU to run decrypted Sound CPU code directly.

Capacitor List (credit: System11)

Main Board

LocationCapacitanceVoltagePart No.
C2011 uF50 VECA-2EM010
C202470 uF25 VECA-1EM471
C203220 uF10 VECA-1AM221B
C20422 uF25 VECA-1EM220I
C209100 uF25 VECA-1EM101
C2101 uF50 VECA-2EM010
C21347 uF16 VECA-1CM470I
C2151 uF50 VECA-2EM010
C2161 uF50 VECA-2EM010
C2171 uF50 VECA-2EM010
C2181 uF50 VECA-2EM010
C2191 uF50 VECA-2EM010
C236100 uF25 VECA-1EM101

Resistor List (credit: fuzzbuddy)

  • R201 – 1KOhm
  • R203 – 100KOhm
  • R205 – 4.7KOhm
  • R208 – 4.7KOhm
  • R209 – 2.7KOhm
  • R211 – 10KOhm
  • R213 – 10KOhm

ROM Details (credit: MAME Source, ekorz)

LabelLocationEPROM Part No.Function
H0B Board27C020 (256kb)Main CPU
L0B Board27C020 (256kb)Main CPU
H1B Board27C020 (256kb)Main CPU
L1B Board27C020 (256kb)Main CPU
SH0B Board27C512 (64kb)Sound CPU
SL0B Board27C512 (64kb)Sound CPU
C0B Board27C040 (512kb)Background Tiles
C1B Board27C040 (512kb)Background Tiles
C2B Board27C040 (512kb)Background Tiles
C3B Board27C040 (512kb)Background Tiles
000B Board27C080 (1024kb)Sprites
010B Board27C080 (1024kb)Sprites
020B Board27C080 (1024kb)Sprites
030B Board27C080 (1024kb)Sprites
DAB Board27C040 (512kb)Audio Samples

Schematics (credit: wickerwaka)

Original Irem schematics are unavailable for M92.
wickerwaka developed a MiSTer FPGA core for the Irem M92 platform, and generated the following schematics (Source):

Additional Resources

MAME M92 Driver Source Codehttps://github.com/libretro/mame2016-libretro/blob/master/src/mame/drivers/m92.cpp
wickerwaka MiSTer FPGA Sourcehttps://github.com/wickerwaka/Arcade-IremM92_MiSTer/tree/main
System 11 Blog – Irem Games and Leaking CapacitorsWebsite is offline – PDF Archived on August 2017
Apr 092024
 

Hi everyone – I’m pleased to announce that JAMMArcade will no longer be shutting down in August as previously posted.

I’ve worked with Porchy to transfer the site over to long-term, sustainable web hosting, and I will also be taking over the reigns as “editor-in-chief” of JAMMArcade going forward. Porchy will continue to host and manage the PLD Archive, and I strongly encourage all of you to visit that page and donate to support the hosting of that site – it’s a valuable resource!

Who am I? My online handle is ShootTheCore, and I’m a lifelong video game enthusiast who first learned how to diagnose and repair arcade boards by reading the logs here on JAMMArcade. I’ve been active in both arcade and console repairs for some time, and even started documenting my own repairs last year at https://www.shootthecore.tech . I’ll be migrating those repair logs over to this site gradually over the next few weeks.

In a nutshell, here is what to know about JAMMArcade.net going forward:

  • This website will continue to operate for the foreseeable future.
  • All of the prior content and downloadable files have carried over.
  • The login accounts that prior contributors used when writing for the site are still active.
  • If you’re interested in contributing fresh content to JAMMArcade.net, please contact me here.
  • If you find any broken links, please let me know.

Thank you for visiting JAMMArcade.net!

Apr 032024
 

After many years of arcade repairs, the time has finally come to hang up my soldering iron and move on. Its probably obvious that my interest in arcade repairs has dwindled over the last few years and with this site still taking up a lot of my space and file count, I think its time to close it down.
It will remain up until August which is when the hosting is paid up to. After this time the site will disappear so if there is anything on here that you want to keep, please make a copy of it before August.
The money saved from this will allow me to keep the PLD Archive Wiki up and running at a reasonable cost for a hobbyist.

Its been a great ride and I’ve loved most of my time in this hobby but the time has come to move on. Thank you to everyone that has ever supported me and this site and I wish you all the very best for the future.

Stay safe
Jon

 Posted by at 8:06 am
Jul 082023
 

Hello,

This is my first repair log on an arcade board, i hope that my text will not be too long and useful to anyone having problems with their own PCB of the same game.

The preambule of this repair :

First thing first, i bought this PCB sold as broken with repair required, paid 130 euros.

On reception :

After pluging the board on my jamma system, i noticed that the board has at least 4 problems to fix.

The first is that i get japanese characters on screen. After reading each eproms and socketed maskroms, i see that FU-05 is from the wrong set. The solution was easy peasy : i bought a 27512 brand new on ebay, and burn the right content from the world set.

Once this first problem is fixed, i get this screen :

This error has already been solved by Porchy, this message appear when the routine that check the presence of the TC4 PAL chip fails. It indicates that the TC4 chip is wrong or toasted. And indeed, by checking with the magical finger touch, the chip is very hot.

So as a solution, i bought a replacement GAL 16V8 on ebay :

Now, the game boot correctly.

Let’s check the next problem to fix :

I see that the graphics are simply flashing constantly on the screen, it’s a mess. The culprit are the sram located here :

Those are TMM2063, and when i passed my finger on them, they were incredibly hot on touch, and the graphics were going crazy on screen. In order to confirm they are shot, i piggyback with new sram replacements bought on ebay : graphics are now fixed !

Let’s remove the buggers :

And install the brand new SRAMs :

Last problem to fix :

I noticed that jump button and start button for PL1 are not working. this board seems to have been connected backwards, so the RC1 custom components are shot. So i contacted Caius, who sold me 4 replacement RC1 pcbs, that i replaced on the board :

It was not easy to remove properly the dead RC1 components, i got 2 traces cut, that i patched after checking them with my multimeter.

Thanks to Caius on a few tips and hints here and there, the PCB is now fully working.

Another board saved ! 😀

Dlfrsilver

(With many thanks to Caius for the help and the replacement parts).